Search results for "Green composite"

showing 10 items of 20 documents

Green composites for fertilizer controlled release produced by compression molding and FDM

2023

Excessive fertilization causes ecological problems due to leaching issues. To solve this problem and promote agriculture sustainability an innovative green composite for controlled release fertilizers was produced by adding NPK fertilizer flour to a biodegradable polymer with or without Opuntia Ficus Indica (OFI) particles. Six formulations were produced and employed for the fabrication of devices both for compression molding (CM) and fused deposition modeling (FDM). Both fillers displayed a good dispersion in the composites, excellent adhesion with the polymeric matrix and effectively acted as reinforcement. The decrease of NPK release rate (up to 30 days) was achieved using whole composit…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymer-matrix composites Biocomposite 3D Printing Compression moulding green composites NPK controlled release
researchProduct

Green composites of organic materials and recycled post-consumer polyethylene

2004

International audience; Addition of organic fillers to post‐consumer recycled plastics can give rise to several advantages. First of all, the cost of these fillers is usually very low, the organic fillers are biodegradable contributing to an improved environmental impact and, last but not least, some mechanical and thermomechanical properties can be enhanced. Organic fillers are not widely used in the plastic industry although their use is increasing. Bad dispersion into the polymer matrix at high‐level content and poor adhesion with the matrix are the more important obstacles to this approach. In this work various organic fillers have been used with a post‐consumer plastic material origina…

Materials scienceAgronomiePolymers and PlasticsGreen compositesMechanical propertiesPost‐consumer films02 engineering and technology010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials12. Responsible consumptionchemistry.chemical_compoundViscosityInorganic fillerMaterials ChemistryRheological propertiesComposite materialchemistry.chemical_classificationbusiness.industryOrganic ChemistryIzod impact strength testChemical industryPolymerPolyethylene021001 nanoscience & nanotechnology0104 chemical scienceschemistry8. Economic growthOrganic fillers0210 nano-technologyDispersion (chemistry)businessSlightly worsePolymer International
researchProduct

Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites

2019

Abstract In this work, a lignocellulosic flour was achieved by grinding the cladodes of Opuntia Ficus Indica and then added to a poly-lactic acid (PLA) in order to prepare biocomposites by melt processing. The influence of filler content and size on the morphological, rheological, and mechanical properties of the green composites was assessed. Moreover, solvent-aided filler extraction enabled to evaluate the homogeneity of filler dispersion, as well as the effect of processing on the geometrical features of the fillers. The experimental data obtained by tensile tests proved to be remarkably higher than those predicted by Halpin–Tsai model, presumably due to the capability of the polymer to …

Materials scienceOpuntia ficusCeramics and Composite02 engineering and technology010402 general chemistryHalpin-Tsai01 natural sciencesIndustrial and Manufacturing EngineeringOpuntia Ficus IndicaRheologyUltimate tensile strengthCladodesMechanics of MaterialComposite materialLignocellulosic fillerchemistry.chemical_classificationbiologyMechanical EngineeringStructure propertyPolymer021001 nanoscience & nanotechnologybiology.organism_classification0104 chemical sciencesGrindingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsCeramics and CompositesPLAGreen composite0210 nano-technologyComposites Part B: Engineering
researchProduct

GREEN COMPOSITES BASED ON BIODEGRADABLE POLYMERS AND WOOD FLOUR

2010

green composites ecocomposites melt blending biodegradable polymers biodegradable composites
researchProduct

The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend

2020

The formulation of polymeric films endowed with the abilities of controlled release of antimicrobials and biodegradability is the latest trend of food packaging. Biodegradable polymer (Bio-Flex&reg

Biodegradable polymer blends Drug release Essential oil Film blowing Green composites Hydrolytic degradation Mechanical properties Montmorillonite PBAT PLAFiller (packaging)Materials science02 engineering and technologymontmorillonitemechanical properties010402 general chemistry01 natural scienceslcsh:TechnologyArticleessential oilchemistry.chemical_compoundbiodegradable polymer blendsGeneral Materials ScienceCarvacrolplahydrolytic degradationlcsh:Microscopydrug releaselcsh:QC120-168.85Nanocompositelcsh:QH201-278.5green compositeslcsh:TpbatBiodegradation021001 nanoscience & nanotechnologyControlled releaseBiodegradable polymer0104 chemical sciencesFood packagingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMontmorilloniteChemical engineeringchemistryfilm blowinglcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment

2020

Over the last decades, natural fiber-reinforced polymer composites (NFRPs) gained great attention in several engineering fields thanks to the reduction of the environmental impact and the end-of-life cost disposal. Unfortunately, the use of NFRPs is limited, mainly due to their weak resistance against humid environments. Since limited literature is available about the evolution of the dynamic mechanical response of NFRPs under aggressive environments, this paper aims to investigate the damping properties of flax, jute and flax/jute epoxy composites exposed to salt-fog up to 60 days. Furthermore, sodium bicarbonate fiber treatment was performed to improve the composites&rsquo

Aging behavior; Damping; Green composites; Salt-fog exposition; Surface treatmentMaterials sciencePolymers and Plastics0211 other engineering and technologies02 engineering and technologyFiber-reinforced compositeArticlesalt-fog expositionlcsh:QD241-441lcsh:Organic chemistry021105 building & constructionFiberComposite materialdampingaging behaviorgreen compositesGeneral ChemistryEpoxysurface treatment021001 nanoscience & nanotechnologyDurabilitySettore ING-IND/22 - Scienza E Tecnologia Dei Materialivisual_artvisual_art.visual_art_mediumPolymer composites0210 nano-technologyPolymers
researchProduct

Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves

2018

Abstract This work focuses on the evaluation of Posidonia Oceanica leaves as effective reinforcing agent for ecofriendly, fully biodegradable polymer composites. Posidonia leaves were washed, ground and sieved in order to achieve two different size distributions and aspect ratios. They were then added to either a stiff or a ductile biodegradable polymer matrix, respectively poly-lactic acid (PLA) and MaterBi® (MB), at two different filler contents (10 wt% and 20 wt%). The materials were fully characterized from a spectroscopic, morphological, rheological, and mechanical point of view. In particular, the outcomes of tensile tests were statistically analyzed by using a Full Factorial Design i…

MaterBiToughnessFiller (packaging)Materials scienceCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesPosidonia OceanicaUltimate tensile strengthComposite materialElastic moduluschemistry.chemical_classificationbiologyFull factorialPolymerFactorial experiment021001 nanoscience & nanotechnologybiology.organism_classificationBiodegradable polymer0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPosidonia oceanicaCeramics and CompositesPLAGreen composite0210 nano-technologyComposites Part A: Applied Science and Manufacturing
researchProduct

Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

2016

Abstract The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress–strain curve of a short-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress–strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent IFSS of flax/starch acetate is within the range of 5.5–20.5 MPa, de…

Interfacial shear strengthMaterials sciencePolymers and PlasticsApparent interfacial shear strengthGeneral Chemical EngineeringComposite numberSheet molding compoundsGreen composites02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsFlax fiberPlasticizersFlaxYarnUltimate tensile strengthChemical Engineering (all)Composite materialThermoplastic starchchemistry.chemical_classificationFiber volume fractionsFlax fiberElastic perfectly plasticStress–strain curvePlasticizerPolymer021001 nanoscience & nanotechnologyFiber reinforced plasticsReinforcement0104 chemical sciencesFibersStress-strain curvesReinforced plasticsInterfacial shearchemistryShort-fiber-reinforced compositesAdhesiveGreen composite0210 nano-technologyLinenInternational Journal of Adhesion and Adhesives
researchProduct

Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling

2022

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts.…

biocompositesTechnologyMicroscopyQC120-168.85FDMgreen compositesTQH201-278.5biopolymers3D printingnatural fillerEngineering (General). Civil engineering (General)ArticleMater-BiTK1-9971Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiDescriptive and experimental mechanicsgreen composites; biocomposites; FDM; biopolymers; Mater-Bi; natural filler; additive manufacturing; 3D printingGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringTA1-2040additive manufacturing3D printing Additive manufacturing Biocomposites Biopolymers FDM Green composites Natural filler Mater-BiMaterials; Volume 15; Issue 2; Pages: 465
researchProduct

Effect of the UV exposure on the creep behaviour of PLA based green composites

2018

Green composites made of biodegradable matrices and lignocellulosic fibers are receiving growing attention from both academia and industries. Despite a wide literature can be found about mechanical behavior of such kind of composites, at the best of our knowledge, only limited information is available about their creep behavior [1] and no papers have been yet done on the effect of ultraviolet exposition. The tensile creep behavior at 40 °C of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. As preliminary characterization, quasi-static tensile tests were carried out on virgin and UV aged composites

Creep green composites PLA jute flaxSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct